Operator Setup Guide

Metal Detector

Conveyor Application

For more detailed information, please refer to the Reference CD.
Introduction

Thank you for purchasing the Phantom Series Conveyor Metal Detector from Fortress Technology.

At Fortress we’re committed to offering the most practical, functional and user-friendly metal detection solutions. Built to customer specifications Phantom Conveyor Metal Detectors are available in a range of aperture sizes and configurations for a variety of industrial applications.

This Operator Setup Guide is intended to get you up-and-running within minutes covering the basic setup procedure in addition to the most commonly used system features.

The supplementary Reference Manual (included on CD) provides further information on all available system functions and it includes additional wiring diagrams.

Advanced Phantom Features

- Core DSP – high speed Digital Signal Processor technology provides the highest processing power
- Ultra-Sense – detection of the smallest metal contaminants with the highest sensitivity levels
- Auto-Test – automated system testing reduces the high costs associated with manual testing
- Auto-Cal – single pass product learning and automatic calibration allow for quick set-up
- Flash RAM – Flash Memory technology prevents information loss
- Modular Design – fewer product parts render improved power-efficiency within a compact housing
- Password Protection – flexible security protection for critical parameters prevents unauthorized use
- Multiple Product Storage – quick changeover between production line runs with retained settings
- Control Options – display terminal can be made portable or mounted remotely; one terminal can operate numerous Detector units
- Automated Data Logging Option – CONTACT Software enables Detector communication with a PC; Wireless Ethernet connection available

For more information including product brochures and regional contact information, please visit our website: www.fortresstechnology.com.

For technical support, please see back cover for contact numbers or e-mail: service@fortresstechnology.com.
Safety & Cautions

Compliance with Safety Standards

The product has been designed to operate safely in accordance with the current technical and safety regulations including the provisions of the Health and Safety at Work Act, relevant EU legislation and OSHA regulations.

NOTE

While every precaution has been taken to ensure the operational safety of the system; it is the responsibility of the owner and/or end-user to ensure that the installation, operation and maintenance of the system complies with the requirements of the local health and safety regulation legislations and codes of practice.

Installation, Commissioning and Operation

NOTE

1. The Metal Detector must be installed, connected, operated and maintained according to the instructions stated in this manual and other operating instructions accompanying this manual.
2. The documentation must be read, understood and all safety instructions followed by persons who are involved in the installation and use of the equipment.
3. Persons supervising, performing maintenance or installation must be suitably qualified and competent. Operators, engineers and supervisors should be given opportunity to study and discuss this manual prior to working with the system.
4. It is the responsibility of the owner and/or end-user to ensure that the equipment is operating properly and continues to operate. Routine testing and maintenance is necessary.

Electromagnetic Radiation

This device is an intentional radiator, emitting a low power radio signal designed to operate in an industrial environment. The product complies with Part 15 of FCC Rules (USA) and relevant legislation under CE.
Safety & Cautions continued

General Safety Guidelines

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Always isolate the system from the electrical and air services before cleaning/maintenance.</td>
</tr>
<tr>
<td>2. Keep away from the operating area of the reject device while power/air supply is applied.</td>
</tr>
<tr>
<td>4. Do not tamper with, modify or attempt to override safety switches.</td>
</tr>
<tr>
<td>5. Equipment is heavy – use lifting devices according to the Handling instructions.</td>
</tr>
</tbody>
</table>

Cleaning Guidelines

The Metal Detector requires routine cleaning for optimal performance. Determine whether the system purchased utilizes a Stainless Steel or Painted Aluminum construction. For IP69K rated Stainless Steel units the system can be cleaned using pressure wash-down, whereas Aluminum units should be cleaned by wipe-down using a damp cloth. Ensure General Safety Guidelines are followed during cleaning and verify that all conduit entries are plugged before washing the Metal Detector.

The Conveyor Belt must also be cleaned regularly; where a non-washdown Metal Detector is present, remove the Belt for cleaning.

For application of specific cleaning products please refer to suppliers instructions and observe advice on safety data sheets. Disinfectants typically contain Chlorine and Ammonia, the use of Chlorine on 304/304L Stainless Steel can increase risk of corrosion.
Table of Contents

Chapter 1: Installation
1.1 Installation – Overview ..1
1.2 Package Contents ...1
1.3 Installation Tools ...2
1.4 Installation Location ...2
1.5 Handling ..2
1.6 Installation Essentials ..3
1.7 Electrical Installation ..5

Chapter 2: Getting Oriented
2.1 Phantom Interface – Introduction...............................7
2.2 Hard vs. Soft Keys ...8
2.3 Menu Navigation ...8
2.4 Editing Menu Options ..9
2.5 Main Menu ..9
2.6 Menu Flowchart ...10

Chapter 3: Quick Setup Tutorial
3.1 Start Up Tests - Overview11
3.2 Power Up Sequence ...11
3.3 Test #1: Initial Signal Check12
3.4 Test #2: Product Calibration12
3.5 Test #3: Establish Sample Detection.......................15
3.6 Test #4: Set Sensitivity Level17
3.7 Test #5: Reject Adjustment18
3.8 Reject Confirm Option ...19
3.9 Alternate Reject Option ...21

Chapter 4: Auxiliary Functions
4.1 Auxiliary Functions - Overview23
4.2 Password Security ...23
4.3 Renaming Products ...25
4.4 Saving a Master Product ...26
4.5 Running Multiple Products27
4.6 AutoTest/Test Request ..29
4.7 Select Unit ..32
4.8 Photo Eye Option ..33

Appendices
Appendix #1 DSP Board Map ...39
Appendix #2 FAQs ..40
Appendix #3 Faults ..43
Appendix #4 Phantom Models ..45

Chapter Aims

- Outlining the essential fundamental rules of Metal Detector installation to ensure successful operation

- Becoming familiar with the Phantom interface and understanding the Menu navigation

- Get up-and-running in minutes by following the preliminary configuration steps – must be carried out before introducing the Detector into production

- Explanation of other commonly used Phantom features encountered once the Detector is integrated into production

- Note that some diagrams in this Guide contain values for illustrative purposes only
Chapter 1: Installation

1.1 Installation Overview

The aim of this chapter is to outline the general fundamentals of Conveyor Metal Detector system installation and present the key considerations that must be taken into account to ensure trouble-free operation.

For additional resources including board maps and wiring diagrams please refer to the Reference Manual (provided on CD).

1.2 Package Contents

Your Phantom Metal Detector kit includes the following:

- Phantom Metal Detector
 (model shown is the Standard Aluminum Phantom)
- Test Samples
 (Cards, Rods, or Spheres)
- Quick-Start Operator Manual
- CD with Reference Manual
- Mounting Kit
 (3 isolators and 1 washer)

CHECK YOUR PACKAGE TO CONFIRM THAT YOU HAVE RECEIVED THE COMPLETE SYSTEM, INCLUDING ALL APPLICABLE COMPONENTS SHOWN ABOVE.

Note: if purchasing an integrated conveyor system from Fortress, the Mounting Kit is not applicable.
1.3 Installation Tools

The installation of your Phantom Detector system will only require general tools – there are no special tools required.

1.4 Installation Location

The location of the Metal Detector is very important; the unit must be positioned on a solid surface/frame. The Metal Detector must be setup in an area free from radiated electromagnetic interference and must be connected to a power supply that is free from line (mains) borne interference.

Environmental Conditions

Temperature range: -5°C to +50°C (23°F to 122°F)

1.5 Handling

The Phantom system's weight depends on the application; the unit is designed to be robust and can be extremely heavy in some cases.

Where the unit has to be lifted, it is strongly recommended that suitable lifting devices be used; keep the unit low to the ground in order to avoid a dangerous topple-over effect.

WARNING!

Do not use the aperture as a means of lifting the Detector via forklift. Use appropriate weight capacity straps to support the unit if lifting by forklift.
1.6 Installation Essentials

Below are the important installation guidelines for successful Conveyor Metal Detector system results:

1. **Metal Free Area**
 No metal can be located in or near the Detector’s aperture (the opening through which product travels). The Metal Free Zone required is equal to 1.5 x the smaller dimension of the aperture. For large moving metal (such as rollers/covers) this zone should be at least 2 x the smaller dimension.

2. **Non-Metallic Slider Bed/Decking**
 Use a non-metallic slider bed (decking) material to support the product through the metal free area; recommended materials are phenolic or micarta due to their low static generating characteristics.

3. **Clearance**
 The belt, slider bed (decking), and product must not come in contact with the aperture walls.

4. **Foot Isolation**
 Only one foot mount should make electrical contact with the mounting frame. The remaining mounting feet must be electrically isolated from the frame using the isolators supplied with the equipment. The supplied washer should be used for one-point grounding. Mounting connections should be firmly fastened as loose mounting points can cause false rejections.

5. **Photo Eye**
 Photo Eye is an optional sensor that can be connected on the infeed side of the Metal Detector for the purpose of ensuring the most precise accuracy of the reject device. Contact Fortress for information on recommended Photo Eye sensors. For more information on Photo Eye, refer to Section 4.8.
1.6 Installation Essentials continued

6. Metal Free Conveyor Belt
 The belt should be suitable for Metal Detector use; avoid anti-static belts or colored belts which may contain carbon or metallic pigments. Where possible use plastic chain belting (eg: Intralox) in a natural color; do not use metal splices (a vulcanized finger splice is preferred for belts which require splicing). If in doubt contact Fortress for help in determining proper belting prior to installation; be sure to protect the belt from weld splatter etc. when working near the Detector system.

7. Roller Isolation
 Rollers should be isolated at one end to avoid possible interference caused by loop effect. See below for details.

Loop Effect

To avoid problems resulting from interference caused by a Loop Effect, ensure the following:

1. Do not allow for cross-members in the conveyor frame to form "loop shapes".
2. Cross pieces need to be isolated or fixed by welding (not bolting).
3. Be sure to isolate only one end of rollers. Excessive static may be generated if both ends are isolated.

To properly isolate a roller, use one of the following concepts:

1) Insert a nylon bushing on reduced shaft;
2) Use a non-metallic bearing housing;
3) Install isolation material behind bearing and nylon bushings on mounting bolts.

Quick Tutorial: Why Rollers can cause Loop Effect

From the Detector’s view, the roller and conveyor frame forms an antenna shape which is very similar to the shape of the aperture. This shape will produce a large field which is reflected back into the Detector. If it remains constant in position and intensity the Detector will not be affected. However, as the roller turns, the bearings will change their electrical characteristics and the loop field will collapse, generating a large error signal. Even moving a closed loop can cause interference. Loops react the same way regardless of whether they are grounded or not.
1.7 Electrical Installation

Power Supply

The Metal Detector's power supply is incorporated within the system's electronic enclosure; the Detector's internal power supply is universal (working voltage 95-260V AC, 47-63Hz). The power cable should be wired to a suitable plug or device with a circuit protection of 3 amps.

WARNING!

Only a suitably qualified Electrical Technician should wire the power supply mains cable.

On the next page is a typical system installation diagram showing the connection of the Power Supply, Reject Device, optional Photo Eye and Reject Confirm. For a more detailed diagram, refer to Appendix #1.
1.7 Electrical Installation continued

Typical Wiring Diagram

Electrical Guidelines

1. Do not use the Detector’s 24 volt supply to power auxiliary devices.
2. Use a clean and stable line supply which has no heavy inductive loads being switched.
3. Use shielded conduit cables.
Chapter 2: Getting Oriented

2.1 Phantom Interface – Introduction

Regardless of the Detector model, the same user-friendly Phantom control interface is utilized; the aim of this chapter is to become familiarized with the terminology and basic operation of the control panel.

The buttons, LED indicators, and display can be categorized as follows:

1. Detect/Fault – illuminates with a red LED upon detection and flashes upon system fault.
2. LED Bar Graph – center-reading meter contains a green and red zone to visually quantify the signal of product, metal, or background noise. The larger the signal the more significant the effect/contamination being detected.
3. LCD Display – digital screen shows system status and enables programming via menus.
4. Soft Keys – used to edit menu options. Refer to Section 2.2 for further details.
5. ENTER – used to confirm changes to menu options.
6. EXIT – cancels any changes and returns to the previous menu.
7. MENU – navigates through submenus. Refer to Section 2.3 for further details.
8. PRODUCT – indicates with a green LED whether a product is running through the Detector; a red LED represents a high product effect reading.
9. Hard Keys – dedicated shortcut keys provide quick access to the most commonly used features. Refer to Section 2.2 for further details.
10. Arrow Keys – used to navigate within menu options, and increase/decrease values when editing. Refer to Section 2.4 for further details.
2.2 Hard vs. Soft Keys

The keypad has a series of 'Hard' and 'Soft' Keys which can be defined as follows:

Hard Keys

The Hard Keys perform the same function irrespective of where you are within the menu structure. These convenient "shortcut" keys (arranged on the right of the keypad) represent the most commonly used functions including: SENSITIVITY, SELECT PRODUCT, CALIBRATE, TEST, and SELECT UNIT.

Less common functions are accessed through the MENU key.

Soft Keys

The Soft Keys change their function according to the menu display, these four keys arranged around the LCD display are used to edit the function being displayed on the LCD next to that Soft Key.

For example the display below shows the reject count displayed next to the top right Soft Key. To reset the reject counter simply press Soft Key 3 (S3).

Convention

For the purposes of this manual the Soft Keys will be abbreviated as S1, S2, S3, and S4 as per the above illustration (also found in the page footer below).

2.3 Menu Navigation

To move from one menu screen to the next, simply press the MENU key; alternatively, while no entry field is being edited (i.e. no flashing cursor is visible) the DOWN arrow key can be pressed to move to the next menu screen and the UP arrow key to navigate backwards.
2.4 Editing Menu Options

General Rules

After pressing the Soft Key associated with an option field, a flashing cursor will appear. To cycle through or edit the value of the option press the same Soft Key again or use the UP and DOWN arrow keys located in the circle keypad. The LEFT and RIGHT arrows are used to move the cursor across the entry field. To accept the new selection press the ENTER key; to cancel the new selection and revert to the old one press the EXIT key.

Note: For a few submenu options (such as Polarity) pressing the associated Soft Key will actually change the setting without the need to confirm via the ENTER button; however, this is not the typical process.

2.5 Main Menu

Upon powering up your Phantom Metal Detector, you will see the following Main Menu:

The four menu items can be defined as follows:

PRODUCT1: the default Product Name.
This field shows the name of the currently selected product – multiple products can be entered into the system. Product information can be edited and products can be deleted via the Select Product Menu (Refer to Sections 4.3 to 4.5 for further details).

REJ: the Reject Count.
The reject count increments with every reject occurrence (a signal reading of over 100) – press S3 to reset the Reject Count.

SENS: Sensitivity numerical setting – Refer to Section 3.6 for further details.
The sensitivity number ranges from 0 to 999 and determines the size of metal that can be detected; smaller pieces of metal can be detected with a higher sensitivity setting. Typically, the sensitivity is optimized between 30 and 200. Press S2 to change the sensitivity or press the SENSITIVITY Hard Key to access the Sensitivity Menu.

SIG: Signal reading – Refer to Section 3.3 for further details.
The signal number displayed represents the relative size of the detection signal; to become a detection, a signal must exceed 100. The Signal Number can be reset by pressing S4.
2.6 Menu Flowchart

Legend

- Hard Keys
- Soft Keys
- Flow Lines
- Junctions

Fault alerts override Menu upon fault occurrences. See Appendix #3 for List of Faults.

Refer to Section 3.6 for Details
Refer to Section 3.7 for Details
Refer to Section 4.2 for Details
Refer to Section 4.4 for Details
Refer to Section 3.2 for Details
Refer to Section 4.8 for Details

Product1 Rej: 0 Sens: 100 Sig: 50

Reject Check Menu
Reject Check: off Time: 200 Polarity

Menu Function and Displays

S1 S3
S2 S4
Chapter 3: Quick Setup Tutorial

3.1 Start Up Tests – Overview

With the Detector assembled and installed, it is now ready for action. The aim of this chapter is to outline the initial tests that must be carried out before introducing the Phantom Detector into production. These preliminary tests ensure system functionality and configure the Phantom Detector for usage with your unique product.

This simple set-up procedure only takes minutes to complete!

INFO

It is strongly recommended that you complete an entire setup of one product before introducing additional products.

3.2 Power Up Sequence

Upon applying power to the Detector, the unit will power up and go through the following start-up process:

1. The LED bar graph will go full scale left and right and then return to the normal operating mode of the centre LED in the Green Zone.
2. The display will indicate the default menu window.
3. The reject device may operate and then return to the normal operating position depending on the settings of your system.

WARNING!

Keep away from the operating area of the reject device upon powering up the unit.

The power up sequence will take approximately 5 seconds and once complete, the Detector will be ready for the initial tests; at this stage you will see the Main Menu screen as depicted below:
3.3 **Test #1: Initial Signal Check**

Before moving forward it is important to ensure that the Detector has a quiet and stable starting point. After the Power Up Sequence is complete, the LED bar graph should appear settled in the centre position.

The Detector will always pick up a small signal reading from its surrounding environment; however, in the absence of product passing through the aperture the Signal should not show a value higher than 30.

```
INFO
The Signal reading will display the highest detection value registered and maintain this value on screen until another detection occurs or until the Signal is manually reset.
```

To test the initial signal follow these steps:

1. Make sure that the Detector's aperture and the conveyor belt are clean; verify that no metal is located within the aperture.

2. Turn ON the conveyor/surrounding machines for a simulation of the true operating environment.

3. Reset the Signal by pressing S4.

4. Check to see if the Detector is in a stable position with no detections falsely triggering and a steady Signal under 30.

If the starting point Signal is under 30 you can proceed.

If the Detector is showing a Signal of over 30 without any product running; it is advised that you stop and examine the cause before proceeding further. Refer to the Troubleshooting Guide (FAQ's) for possible causes and corrective solutions.

3.4 **Test #2: Product Calibration**

Every product has unique characteristics; the purpose of Product Calibration is to "teach" the Metal Detector these product attributes known as "Product Effect". The Detector then "learns" the product in order to ignore or "Phase Out" the inherent product effect at a particular "Phase Point" and "Mode" (wet or dry).
3.4 Test #2: Product Calibration continued

Quick Tutorial: Product Effect

Metal Detectors detect metal based on measuring electrical conductivity and magnetic permeability. Many products inspected inherently have one or both of these characteristics within their makeup. For example: any product that is iron enriched, such as cereals, create a large magnetic signal for which the Detector must compensate in order to detect small pieces of metal. Products with high moisture such as bread, meat, and cheese are electrically conductive and produce a large conductive signal – these are referred to as "wet" products. During a fast learn process, the Phantom Detector automatically sets its phase point to ignore the product effect signal; the following table shows typical product effect signals and categorizes them as wet or dry.

<table>
<thead>
<tr>
<th>Typical 'Wet' Products</th>
<th>Typical 'Dry' Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food: Meat, Cheese, Bread & Bakery Products, Fish, Dairy Products, Salads</td>
<td>Food: Cereal, Crackers, Cookies, Frozen Food Products (< 20°F/-7°C), Peanut Butter and Margarine (Vegetable oil is not conductive)</td>
</tr>
<tr>
<td>Packaging: Metallic Films</td>
<td>Other: Wood Products, Plastics and Rubber (Products with high carbon black content may be considered 'wet'), Textiles, Paper Products</td>
</tr>
<tr>
<td>Other: Plastic and Rubber products with high carbon black content</td>
<td></td>
</tr>
</tbody>
</table>

The Detector will be set with factory settings which may not necessarily match those needed to run your product (although Fortress strives to preset the Detector settings to meet the product application).

To determine if factory settings correspond to your product application try the following:

1. Reset the Signal by pressing S4.
2. Pass a typical product through the Detector aperture while checking the Signal reading and Product LED illumination.
3. If the Detector does not "see" the product (Signal below 60) then the product effect may not affect detection; or, the factory settings already match the product. Normally the Product LED will appear Green upon passing the product through; however, sometimes it may not illuminate at all due to minimal product effect. In either event you are OK to proceed to the next subsection of Quick Product Calibration.
4. If the product generates a detection signal you are likely to have a product effect that needs to be phased out and should proceed with the Quick Product Calibration procedure provided that the Product LED is not Red.
3.4 Test #2: Product Calibration continued

5. If the Product LED is Red you may be prompted with the following screen:

![High Product Signal](image1)

A red Product LED indicates that product effect is excessive which may result in an erroneous phase number when calibrating. The software will provide you with the option to switch to "Low Power" or "Ignore". Switching to "Low Power" will lower signal strength to account for the high product effect. Press Soft Key (S4) to automatically switch to Low-Power mode. You may then proceed with the next step of Calibration; however, if your system was already preset to "Low-Power" mode, lowering the power is not an option. You will need to call Fortress Technology to troubleshoot.

Quick Product Calibration Procedure

To "learn" a new product or re-calibrate at any time simply press the Calibrate key twice and let good product pass through the Detector; the Detector will automatically learn the correct phase number of the product and determine whether it is Wet or Dry. Below is a step-by-step breakdown:

1. Press the CALIBRATE Hard Key on the right side of the Phantom control panel.

2. Press the CALIBRATE Hard Key again and the display will show a "fast" learn mode.

![Setup fast](image2)

Phase: 92.14 wet
3.4 Test #2: Product Calibration continued

3. Run a typical product through the Detector at normal speed and orientation.

4. The menu display will change "Fast" to "Fixed" and the Phase number should change to a new value.

5. The Detector is now setup for the product.

Confirm Proper Product Calibration

To ensure that Calibration was successful try the following:

1. Return to the Main Menu by pressing the EXIT key.

2. Press S4 to reset signal.

3. Pass a typical product through Detector.

4. If calibrated correctly the signal should be under '60' (20-30 typical).

Note: the Sensitivity may need to be adjusted in order to reduce the effect of difficult product. Please refer to Section 3.6 for further details.

3.5 Test #3: Establish Sample Detection

Now that the Detector is set and calibrated for the product to be run, a manual test is highly recommended (to see how well the system is working).

The Detector's response in the event of metal contamination can be simulated using the supplied Test Samples. The testing procedure is intended to confirm the Detector's performance as well as the operation of the Reject system thus ensuring that contaminated product will be correctly handled.
3.5 Test #3: Establish Sample Detection continued

Testing Procedure

For the next steps you will need to utilize the Test Samples (spheres, cards, or rods) included with your Phantom Metal Detector; follow these steps to test the Detector and Reject device:

1. Affix a test sample (sphere/card/rod) to your product; Fortress recommends using several methods to simulate a variety of situations:
 - Placing the test piece at the leading edge of the product;
 - Placing the test piece at the trailing edge of the product;
 - Passing successive test packs;
 - Passing alternate test packs.

2. Pass the product with the affixed test sample through the Detector.

3. Check to see if the Signal reading exceeds 100 indicating a correct detection.

4. Monitor the operation and accuracy of the Reject device in removing the contaminated product from the production flow. For more information on Reject adjustment refer to Section 3.7

The Sensitivity will need to be adjusted given the following Signal reading scenarios:

1. If the Signal shows a very high result (over 1000) it’s advisable to lower the Sensitivity.

2. In the unlikely event of the Detector not detecting the test sample try increasing the Sensitivity to the point where background Signal for good product is approximately 60.

For more information on utilizing the Sensitivity setting refer to the next section.

NOTE

Test samples should be passed through the center of the aperture (the least sensitive area for detection).
3.6 Test #4: Set Sensitivity Level

The Detector's sensitivity level determines the size of metal that can be detected. Smaller fragments of metal are detectable at higher sensitivity levels; however, higher sensitivity levels also make the Metal Detector more susceptible to outside interference and product effect.

The goal is to optimize the Sensitivity so that it is maximized at a safe level without compromising overall system performance.

- The factory default for Sensitivity is 100.
- The Sensitivity number value can range from 0 ~ 999.
- The typical Sensitivity setting used ranges between 30 ~ 200.

General Rule: Sensitivity may be increased as long as Signal from product is under "60".

Sensitivity Adjustment Procedure

To adjust the Sensitivity follow these steps:

1. Press the SENSITIVITY Hard Key on the right side of the Phantom control panel.

2. Press S3 and a flashing cursor will appear.

3. Press the UP/DOWN arrow keys (+/–) to increase or decrease the Sensitivity, the LEFT/RIGHT arrow keys can be used to scroll the cursor between digits.

4. Press ENTER to confirm.
3.6 Test #4: Set Sensitivity Level continued

Confirm Sensitivity Level

To ensure that a proper Sensitivity level was successfully applied try the following:

1. Return to the Main Menu by pressing the EXIT key.

2. Press S4 to reset Signal.

3. Pass a typical product through the Detector.

4. Check the Signal reading – if it is below 60 you may increase the Sensitivity further (a Signal between 40 ~ 60 is acceptable). If the Signal reading is above 60 then you should try lowering the Sensitivity.

3.7 Test #5: Reject Adjustment

If you’re finding that the reject device is not successfully removing the test samples from the production line in the testing scenarios described, an adjustment to the Reject Delay and/or Duration is required.

Reject Delay is the number of seconds from the moment of detection before the reject device activates.

Reject Duration is the number of seconds for which the reject device will be activated.

Photo Eye Option

If your system includes a Photo Eye sensor, please skip ahead to Section 4.8 for more information on configuring the Photo Reject system before proceeding with the next steps.

Shaft Encoder Option

If your system includes a Shaft Encoder External Reject Clock, Reject Delay and Duration are measured in pulses rather than seconds. A Shaft Encoder is typically utilized in applications where belt speeds are variable as it automatically adjusts to speed changes. For more information on activating this option please refer to the Reject Clock submenu section of the Reference Manual.
3.7 Test #5: Reject Adjustment continued

Reject Adjustment Procedure

Follow these steps in order to correct the reject accuracy:

1. From the Main Menu press the MENU key once to navigate to the Reject Menu.

2. Press S2 to adjust the Reject Delay time. Increase/decrease the value using the arrow keys followed by ENTER to confirm the adjustment.

3. Press S4 to adjust the Reject Duration time. Increase/decrease the value using the Arrow keys followed by ENTER to confirm the adjustment.

4. Press EXIT to return to the Main Menu.

5. Run the Test Procedure using "Reject Packs" (a pack of product containing a test sample) again to ensure that you get the right reject timing.

3.8 Reject Confirm Option

The Phantom Metal Detector will record a Reject when the Signal reading exceeds 100 but without Reject Confirm the system cannot determine whether the reject device actually functioned. The Reject Confirm option provides a means of verifying that the reject device worked properly.

By connecting a position sensor on the reject mechanism, the full movement of the reject can be accurately confirmed. When using an Air Blast Reject, the sensor can be located on entry to the reject bin. Examples of sensors used include a reed sensor, inductive sensor or proximity switch.

The Phantom Metal Detector allows for up to two reject confirmation inputs to be monitored – normally one at the reject position and the other one at the home position. Refer to the wiring diagram on the next page for setup instructions.
3.8 Reject Confirm Option continued

Setup and Wiring for Reject Confirmation

<table>
<thead>
<tr>
<th>Terminal Wiring</th>
<th>Location of sensor</th>
<th>Settings (Normal Operation)</th>
</tr>
</thead>
</table>
| ![Diagram](image) | Reject Position | Reject Polarity: Failsafe
Reject Check : 1
R1 Polarity : Low |
| | Both Positions
(Home Position and
Reject Position/Bin Full) | Reject Polarity: Failsafe
Reject Check : 2
R1 Polarity : Low
R2 Polarity : Hi
Note: Reject Check 2 can also function as the Reject Bin Full sensor. |

Upon reject, any failure in the movement of the reject mechanism will be identified by the sensor and it will trigger a Fault. There are two Faults related to the reject confirmation option which include:

1. **Reject Check Fault** – occurs when the reject mechanism cannot/did not move from the home position to the reject position within a specified amount of time; or, when product was not seen entering the reject bin.

2. **Reject Position Fault** – occurs when the system could not confirm if the reject mechanism returned to the home position; this error may also be caused by incorrect polarity settings in the software.

Configuring the Reject Confirmation System

To enable the Reject Confirmation option in the software follow these steps:

1. From the Main Menu press the MENU key once to navigate to the Reject Menu.
2. Press S3 to enter Reject Setup.
3. Press the MENU key twice to arrive at the Reject Check menu.
3.8 Reject Confirm Option continued

4. Press S3 to select how many reject confirmation sensors are being used (options are: 1 sensor/2 sensors/Off - meaning no sensors):

5. Press S2 to select and edit the reject confirmation time (measured using an internal clock which has 231 pulses per second). Press ENTER to confirm. The number represents the amount of time it takes for the reject device to extend and retract; exceeding this threshold will result in a fault.

6. Press S4 to enter the Reject Confirmation Device Polarity Menu where you can toggle the polarity of the reject confirm sensors.

3.9 Alternate Reject Option

The Alternate Reject option allows you to connect a second reject device with separate reject timing settings. When configured, the secondary ALT Reject output of PL11 will function independently of the main PL3 reject relay. Refer to the wiring diagram below for setup instructions.

Setup and Wiring for Alternate Reject

The Alternate Reject can remain activated for a longer period of time than the main reject; for example, if the main reject is a fast-operating reject device (such as a kicker or retract), the secondary reject might be a beacon light that should remain activated for a longer duration so that it is more noticeable.
3.9 Alternate Reject Option continued

Configuring the Alternate Reject

To enable the Alternate Reject option in the software, follow these steps:

1. From the Main Menu, press the MENU key once to navigate to the Reject Menu.

2. Press S3 to enter Reject Setup.

3. Press the UP Arrow key twice to find the Alternate Reject Menu:

4. Once you adjust either the Delay or Duration to a number above the default setting of zero, the system will automatically enable the Alternate Reject as an independent reject output.
Chapter 4: Auxiliary Functions

4.1 Auxiliary Functions – Overview

Now that your Phantom Metal Detector has been calibrated and tested successfully, you are ready to integrate the system into production. The aim of this chapter is to highlight and explain the features most commonly used in day-to-day operation – the functionality of these features is further elaborated upon in the Reference Manual along with other features that aren’t covered in this Guide.

4.2 Password Security

Password protection prevents an unauthorized user from tampering with the Metal Detector; the Phantom allows you to configure password protection selectively, allowing operator access only to a select number of functions.

Activating Password Protection

To enable or disable password security and create a new password, follow these steps:

1. From the Main Menu press the MENU key twice to access the Password Menu.

2. To turn Password protection ON/OFF press S3.

3. A flashing cursor will appear – press S3 again to toggle between ON/OFF followed by ENTER to confirm.

When password protection is ON you will be prompted for the password upon any key press and the display shown below will appear.

INFO
The Default Password is "AAAA"
4.2 Password Security continued

Change Password

To Change your Password follow these steps:

1. From the Password Menu press S4 to enter the Password Setup.

2. Press one of the lower Soft Keys (S2 or S4) to modify the password – a password can be made up of any four alphabetical, numerical or underscore (_) characters.

3. Press the UP/DOWN arrow keys (+/−) to change each character; the LEFT/RIGHT arrow keys are used to scroll the cursor between characters.

4. Press ENTER to confirm the new password and EXIT to return to the Password Menu.

Logout

The Logout function found in the S2 position of the Password Menu reinstates password protection after you have completed adjustments to the Metal Detector settings. Password protection will be reinstated automatically if no key is pressed for 5 minutes.

Wrong/Forgotten Password

If you enter an incorrect password the following menu screen will appear:
4.2 Password Security continued

Press S2 to 'Try Again'. If you have forgotten your password press S4 and the Detector will display a Seed Number which Fortress engineers can decode for you. Please be prepared to offer proof of your authority when calling in to obtain the correct code.

Advanced Password Configuration

For a more detailed explanation of the advanced Password security settings (including selectable Hard Key/Soft Key operator access), please refer to the Password submenu section of the Reference Manual.

4.3 Renaming Products

The Main Menu displays the name of the product currently being run; by default the Product Name is set to PRODUCT1 and no additional products are setup. To change the default product name to a more suitable descriptive one, follow these steps:

1. Press the SELECT PRODUCT key on the right side of the Phantom control panel.

2. Press one of the lower Soft Keys (S2 or S4) alongside the product name to edit the name.

3. A flashing cursor will appear on the first letter, press the UP/DOWN arrow keys (+/−) to increase or decrease the alpha and numeric characters. The LEFT/RIGHT arrow keys are used to scroll the cursor between characters.

4. Press ENTER to confirm.
4.4 Saving a Master Product

After you’ve followed all the Quick Start procedures and renamed your product, it is strongly recommended that you save the settings. With your saved Factory Settings you can easily restore the saved product setup configuration at any time. This capability proves to be valuable in cases where operator changes have a negative effect on the system’s performance as it is easy to revert back to the stored settings.

To Save a Master product record follow these steps:

1. Press the SELECT PRODUCT key on the right side of the Phantom panel.
2. Press S3 to enter the Product Edit submenu.
3. Press S4 to enter the Factory Settings submenu.
4. Press S2 to save the current product settings as the Master settings also known as the Factory Settings.

To restore the saved Factory Settings at any time simply press S4 in the menu shown above.

Note: Reset and Restore should not be confused – the Reset function changes the current product settings back to the standard default settings; whereas Restore returns the current product settings to your saved Master configuration.
4.5 Running Multiple Products

The Phantom allows you to store settings for up to 99 different products in its memory. Product settings (including sensitivity and calibrated phase point) are instantly retrieved upon changing from one product to another.

Create a New Product

To create a new product you are in actual fact "copying and pasting" an existing product already stored in your Phantom's memory into a new product slot. The first time that you create a new product you are copying the information from the Master product that is setup. When creating subsequent new products you may copy from any product record; adjustments to new products do not affect the settings of the product that was initially copied. Follow these steps to setup a new product:

1. Press the SELECT PRODUCT key on the right side of the Phantom panel.

2. Press S3 to enter the Product Edit submenu.

3. Press S1 to enter the Copy Product submenu.

4. To create a new product press either of the upper Soft Keys (S1 or S3) to select the "slot" number of the new product. (Remember to always choose a slot number that is not currently in use because the information in an existing slot will be replaced by the copied contents.) A flashing cursor will appear press the UP/DOWN arrow keys (+/−) to increase or decrease the slot number. Press ENTER to confirm.

5. You can quickly edit the product name for your newly created product by pressing one of the lower Soft Keys (S2 or S4) and then press ENTER to confirm.

After exiting, the newly created product will appear as the currently selected product in the Main Menu.
4.5 Running Multiple Products continued

Select a Product

To switch from one product to another, follow these steps:

1. Press the SELECT PRODUCT key on the right side of the Phantom panel.

2. From the Select Product Menu press the SELECT PRODUCT Hard Key again to scroll through the list of products and press ENTER to confirm a selection.

Delete a Product

To erase a stored product record, follow these steps:

1. Press the SELECT PRODUCT key on the right side of the Phantom panel.

2. Press S3 to enter the Product Edit submenu.

3. Select the DELETE option (S2) from the Edit submenu of Select Product.

4. Press one of the upper Soft Keys (S1 or S3) to edit the Delete entry field.

5. Select the number of the product you want to delete.

6. Press the ENTER key – the name of the product will change to UNDEFINED to confirm that the product has been deleted.

Note: you cannot delete a product that is in use and you can never delete Product #1.
4.6 AutoTest/Test Request

It is highly recommended that the sensitivity of the Detector is checked routinely via testing as part of the quality control procedure. The Phantom offers two distinct methods of automated testing to confirm the Detector's performance as well as the response of the reject mechanism.

AutoTest: performs short interval testing of the Detector's sensitivity and valve reaction without any operator involvement; thus reducing the high cost of frequent manual testing. AutoTest works by injecting a simulated metal signal (identical to a test metal sphere sample) that acts as a rejection. You can set the simulation to occur at either the touch of a button (Manual option) or at regularly scheduled time periods of your choice (Auto option).

Test Request: you may set the Detector to automatically request a test procedure utilizing the test samples supplied at regular intervals (Request option).

Note: AutoTest is an optional setup. Test Request is recommended for conveyor applications as test samples can be easily inserted into the production flow.

Configuring AutoTest/Test Request

To setup the AutoTest/Test Request function follow these steps:

1. Press the TEST Hard Key on the right side of the Phantom control panel.

2. From the Test Menu, press S1.
4.6 AutoTest/Test Request continued

3. From the Test Setup submenu, press S3 repeatedly to select between AutoTest modes: Manual/Auto/Request.

![Test Mode: manual]

4. Press the ENTER key to confirm the selection.

5. If you selected Manual mode, Test setup is complete and you may Exit.
 If you selected Auto/Request press the S4 key to adjust the setting of the Interval either increasing or decreasing the test timing via the Arrow Keys, then pressing ENTER to confirm.

AutoTest Operation – Manual/Auto Mode

To execute AutoTest under Manual mode, follow these steps:

1. Press the TEST Hard Key on the right side of the Phantom control panel.

2. From the Test Menu press S3.

![Setup: Test: off, Rej: 0, Sig: 5]

3. A simulated metal signal is instantly injected; check to confirm that a detection Signal and Reject increment occurred and that the reject device was properly triggered.

4. To execute AutoTest under Auto mode, no action is required as the test will be run at the prescribed interval.

Note: If an AutoTest execution does not cause a detection, a Fault is generated.

Test Request Setup & Operation

Test Request prompts the user to conduct testing using the supplied test samples at specified time intervals.
4.6 AutoTest/Test Request continued

Setup and Wiring for Test Request

You can change the number of test passes that are required per test sample (Ferrous/Non-Ferrous/Stainless Steel). To setup the Test Request Passes follow these steps:

1. Press the TEST Hard Key on the right side of the Phantom control panel.
2. From the Test Menu press S1.
3. From the Test Setup Menu press the MENU key once.
4. The Required Passes submenu will appear as shown:

5. Use the corresponding Soft Keys to edit the values of Ferrous (FE), Non-Ferrous (NFE) and Stainless Steel (SS) test sample passes.

To operate Test Request follow this procedure:

1. For the purposes of this tutorial set the Test Request time interval to a low value of 1 minute via the Test Setup Menu – this modification will allow you to quickly access the Test Request features (you can later change the interval to a more appropriate value).
4.6 AutoTest/Test Request continued

To operate Test Request continued

2. When the Test Request time interval comes up the Test Required screen will automatically appear.

3. Press S4 to enter the Operator Code – a value between 0–99 that represents the identity of the Test Operator.

5. You will be presented with a series of three Test Pass screens starting with Run Ferrous. Run the Ferrous test sample through the aperture per the number passes selected in Required Passes.

6. After each test sample run, press S4 to move on to the next phase:

7. At the end of the three test passes you will see a Test Complete screen showing the result.

A "Pass" indicates that all required passes generated a detection Signal above 100.

A "Fail" occurs when at least one of the test passes did not render a detection Signal above 100 and a Test Signal Fault will subsequently appear.

4.7 Select Unit

With Phantom models, multiple Detectors can be controlled by a single control interface – this option offers convenience when Detectors are installed in difficult to access locations.

For more in-depth instructions on managing Multiple Units please refer to the Select Unit section of the Reference Manual.
4.8 Photo Eye Option

A "Photo Eye" sensor can be added to the Conveyor Metal Detector system as a measure of ensuring precise accuracy of the reject device. The Detector uses the data of the package length, belt speed, and the relative location of the sensor, in order to calculate and keep track of the product's exact position on the conveyor. These data figures can be quickly established using the "Learn" feature of the Photo Eye setup.

Photo Eye alerts the Detector that product is on its way and it can vary the reject trigger timing so that contaminated product is accurately rejected regardless of the location of the contaminant in the product (ex. front or back). In applications where product is fast-moving or large in size, a Photo Eye is highly recommended. The Photo Eye is a requirement when using Kicker/Air Blast/Retract/Flap Gate reject mechanisms.

The sensor is situated at the point where product is entering the Detector, close to the head without making contact and outside of the metal free area. Ensure that the sensor is perfectly aligned with the reflector on the opposite side; see below for a connection diagram and a photo of a standard installation.

The system can be set to reject contaminated product at its midline (mid), leading edge (lead), or for the entire length (length) of the package. The appropriate setting will depend on the type of reject device used and type of product; for example, a box of cereal might simply spin and remain moving forward on the conveyor if a Kicker reject hits the leading edge of the package and not the middle.
4.8 Photo Eye Option continued

Learn Feature

In order to enable the Photo Reject System the following information is required:

1. the Package Length.
2. the Conveyor Belt Speed.
3. the Photo Eye Distance – which is the distance between the Photo Eye sensor and the centerline of the Metal Detector.

The Belt Speed and Photo Eye Distance can be calculated automatically via a "Learn" test run. Alternatively, the values can be measured and entered manually.

INFO
It is highly recommended that you use the automatic Learn feature for the most accurate measurements. If you change system settings, a "re-Learn" test run might be required.

To configure the Photo Reject System using the Learn feature follow these steps:

1. From the Main Menu press the MENU button to display the Reject Setup Menu.
2. Press S3 to display the Reject Mode Menu.
3. Press S3 to toggle the Reject Mode, press the ENTER key when the "photo" option is displayed. This puts the Detector in Photo Reject mode.

INFO
Reject Mode: photo
Polarity: failSafe
4.8 Photo Eye Option continued

4. After setting the Reject Mode to "photo" press MENU once to display the Photo Reject Setup Menu.

The "mid" option of Photo Reject means that the reject device will hit the middle of the package regardless of the package size – it can be changed to "lead" (leading edge) or "width" (entire length of package) by pressing S3.

The "Eye" field refers to the polarity setting of your Photo Eye, it should read "low" when the sensor is not blocked and "hi" when being blocked. If the opposite occurs then the polarity needs to be inverted by pressing S2.

5. Press S4 to arrive at Photo Reject Learn Menu.

6. Press S4 to commence with the Learn feature.

7. Learn first requires manually entry of the Package Length which is measured by hand. To enter the Package Length press S4 and modify the value then press ENTER.

Note: the S2 key can be used to toggle the measurements to/from metric equivalents.

INFO
Package Length depends on the product orientation when passing through the Detector. Example: the loaf of bread shown on next page could be either 4" (100mm) or 12" (300mm) in Length.
4.8 Photo Eye Option continued

8. Once the Package Length is entered you’re ready to run a test pack and automatically learn the Belt Speed plus the Photo Eye Distance. Before running the test pack make sure that the conveyor is running at its regular speed, then prepare a test pack by placing a test sample directly in the middle (lengthwise) of a real product sample. Examples of test sample placements are shown below:

9. Run the test pack through the Detector at its normal orientation:

10. Press the "OK" Soft Key (S3) to confirm that the test pack has been run.
4.8 Photo Eye Option continued

11. You will see the results from the Learn feature’s calculations as shown below:

In the example shown, the Photo Eye Distance was calculated at 10 inches (250 mm), the Belt Speed at 60 feet per minute (18 m/min) and the Polarity was found to be Positive. If you are satisfied with the read-only results press S4 to save the values in the software.

INFO

The calculation of the Photo Eye Distance may not appear to be accurate in some instances. This can occur because the Detector is compensating for internal filters. It is not an error.

Photo Reject Setup

After Learn is completed there are still a few variables to consider in the Photo Reject configuration.

1. Upon saving the settings from Learn the screen will return to the Photo Reject Learn Menu, press the MENU button once to advance.

2. The Package Length Menu will appear; this value should have already been entered and saved in Learn. Press MENU again to advance to Photoeye Distance followed by Belt Speed – both of which were also configured in Learn. If you’d like to adjust any of the calculated values you may do so by pressing S2, and then ENTER to confirm.
4.8 Photo Eye Option continued

Photo Reject Setup continued

3. Press the MENU button again to advance to the Photoeye Block Limit Menu.

The Block Limit refers to the amount of time that the Photo Eye sensor can be blocked before a "Peye Block" fault is generated. The time period is measured in multiples of package lengths (how long a package typically blocks the sensor). Press S4 to edit the value, and then ENTER to confirm.

4. Press the MENU button again to display the Minimum Package Menu.

Minimum Package Gap refers to the minimum amount of space allowed between packages on the conveyor. It should be set to the minimum gap distance between products on the line. The Detector will assume that packages that are closer together than the gap are a single pack. Press S2 to edit the value, and then ENTER to confirm.
Appendix #1: DSP BOARD MAP

Link Connection
- LK1 & LK2 must be removed if COMM is to be powered externally
- LK3 & LK4 must be removed if Display is to be powered externally
- LK5 – RS485 and RS232 Display Protocol Selector
- LK6 – Enable Ethernet XP1 Device Converter must be removed if RS485 is used in COMM1

Refer to Reference CD for complete Board Details

PL10 INPUTS
- +24VDC: Input devices Rated DC +24, 0.05A Max
- Encoder Clock: Inputs must be NPN(Sinking type)
- PhotoCell Signal: Designed as PLC inputs or low current input
- OVD: Input devices can be powered externally by a 24VDC supply (R39 and R40 must be removed)

PL11 OUTPUT
- 2nd/ALT Reject Output
- Test Request Output: Rated AC/DC 0-250V, 0.15 A Max
- Fault Output

PL3 REJECT
- Dry Contacts:
 1 & 2 will open upon detection
 2 & 3 will close upon detection
- State can be inverted in Reject Menu (Not Failsafe)

References:
- www.fortresstechnology.com
Appendix #2: FAQs (Frequently Asked Questions)

Troubleshooting Guide

When a malfunction occurs it may not be serious and can be corrected easily. The following describes the most common problems and solutions; please refer to the following before calling Technical Support.

![Stopping symbol]
WARNING!

Shock Hazard
Only qualified service personnel should remove the Detector cover.

Remove the display cover and follow the respective check list below:

Problem

Upon initial power-up the display does not light up.

Check

- Make sure there is power going to the Detector per the Power Supply connection instructions in Section 1.7.
- Fasten any loose cable connections.
- Confirm that the Display Cable connector is plugged into [PL13 – Display] Digital Board. Refer to Appendix 1 for orientation of wires and the Reference Manual for additional wiring diagrams.
- The Green LED (LD2) on the top center of Digital Board should be flashing; if the green LED (LD2) is not flashing, check for loose cable connection on PL15 (Blue & Green wire) of the Digital Board. 5Volts DC can be measured on TP10 (in front of PL5) with a voltmeter.

Problem

The Detector is falsely triggering.
Appendix #2: FAQs continued

Check

- Investigate various symptoms of false triggers to determine the source. Perform the Initial Signal Check described in Section 3.3 to determine whether false triggering is coming from the conveyor, outside environment, or product.

- If the **Conveyor is the source of false triggering**; three common possibilities are:
 - Contaminated Conveyor Belt
 - Electrical Loop
 - Metal in the Metal Free Area

 Contaminated Belt
 Stop the conveyor belt as soon as the Detector triggers (signal over 100) – at this point, mark the belt with tape and observe if Detector is being triggered on the same spot repeatedly. If it is then the belt may be contaminated and needs to be cleaned.

 Electrical Loop
 Make sure all moving cross members, metal transfer plates or rollers are electrically isolated. If possible loosen tension on the belt and manually move all free rolling rollers back and forth to see if there is any response from the Metal Detector. Refer to "Loop Effect" in the Installation chapter for more information.

 Metal in Metal Free Area
 Look for any large pieces of metal around the aperture opening such as metal guides, covers, wire cables, etc. that may move when the conveyor is on. Refer to the Installation chapter for more information.

- If the Detector is **false triggering even when the Conveyor is off**, the Detector may be detecting **outside interference** from the surrounding area. Possible sources of such interference are:
 1. Airborne electrical interference – static, radio (RF), earth loops, variable frequency drives.
 3. Temperature fluctuation – ovens, freezing tunnels.

- The Detector may be capable of filtering any one of these types of interference through the digital filter settings; but, if at all possible, it is recommended to identify and fix the source of interference to achieve optimal performance from the Metal Detector.

- If the Product is the source of false triggering, try re-calibrating the system as described in Section 3.4 and then adjust the Sensitivity (per Section 3.6).

Note: if you change the Sensitivity level, always ensure that your test samples can still be detected.
Appendix #2: FAQs continued

Problem

The reject device is malfunctioning.

Check

- On the Display Panel confirm that the Signal level is exceeding 100 and the red detection light is ON in the event of a reject activation.

- Check if the actuator/cylinder valve is changing state upon a Signal of 100 or greater. If not, check whether the reject cable is properly wired to the Digital Board reject output (refer to Wiring Diagrams in Section 1.7 and Reference Manual).

- If using a Photo Eye sensor on the infeed and Photo Reject is enabled; the Photo Eye beam must be blocked before the metal sample enters the aperture. Refer to Section 4.8 for setup procedure.

- If actuator/cylinder valve is changing state, confirm there is adequate air pressure to the device (typically 60 psi/4 bar).

If problems still persist contact Fortress Technology’s Technical Support for assistance.
Appendix #3: Faults

Fault Wiring Diagram

![Fault Wiring Diagram](image)

List of Faults and Corrective Actions

<table>
<thead>
<tr>
<th>Fault</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>24V</td>
<td>• Power supply not functioning properly</td>
<td>• Power supply needs to be checked and/or replaced</td>
</tr>
<tr>
<td>Air Pressure</td>
<td>• The air pressure sensor connected to the isolated input of the DSP board (PL10 pins 9 & 10) is indicating a low pressure which may impair the proper function of the reject device
• Air pressure sensor not functioning properly</td>
<td>• Verify air pressure going to the sensor with the reject device set to factory default; typically about 60-80 p.s.i.
• Verify air pressure sensors are installed
• Verify air pressure proper functionality
• Fault can be cleared and masked in the software, until a technician has verified and corrected the causes of the fault</td>
</tr>
<tr>
<td>Balance</td>
<td>• There is metal located within the Detector aperture
• The Detector balance is excessive</td>
<td>• Verify that no metal is located within the Detector aperture
• Check if LD3 (yellow LED) on DSP board is on
• Measure voltage on test point TP11 (orange, below LD3)
• Call Fortress for assistance</td>
</tr>
</tbody>
</table>
List of Faults and Corrective Actions continued

<table>
<thead>
<tr>
<th>Fault</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excess Reject</td>
<td>• The number of rejects has exceeded the limit set within the software Feature is enabled via Fault Setup Menu.</td>
<td>• Check rejected product for metal contaminants</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Make sure the Detector is calibrated for the running product</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Can be cleared via the Clear soft key (S3) and masked in the software’s Fault Menu</td>
</tr>
<tr>
<td></td>
<td>The large metal threshold limit has been exceeded Feature is enabled within Sensitivity submenu.</td>
<td>• Verify that no metal is located within the Detector aperture</td>
</tr>
<tr>
<td></td>
<td>• The large metal threshold has been set too low</td>
<td>• Increase the large metal threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Can be cleared via the Clear soft key (S3) and masked in the software’s Fault Menu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check last packs through metal Detector for large metal contaminant</td>
</tr>
<tr>
<td>Large Metal</td>
<td>• The infeed Photoeye is blocked for an excessive amount of time Infeed Photoeye may not be functioning properly</td>
<td>• Verify that a Photo Eye is being used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check that the product is not blocking the infeed area; check the Photoeye for proper function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the Photo Eye installation for proper alignment of sensor and reflector</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the infeed Photoeye polarity (can be inverted in the software)</td>
</tr>
<tr>
<td>Peye Block</td>
<td>• A phase limit was exceeded during a calibration or auto phase update</td>
<td>• Can be cleared via the Clear soft key (S3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the phase point and perform a fast phase calibration</td>
</tr>
<tr>
<td>Phase Limit</td>
<td>• Product memory may be corrupted</td>
<td>• Cycle power to clear memory or reset the product record via Reset in the Product, Edit Menu</td>
</tr>
<tr>
<td>PROD Memory</td>
<td>• The reject bin is full (this may prevent product from being successfully rejected into the bin)</td>
<td>• Check the bin and empty rejected product – handle according to operational procedures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check that the sensor in the bin is not misaligned</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the polarity of the input</td>
</tr>
<tr>
<td>Rej Bin Full</td>
<td>• Reject confirmation device(s) failed to verify that the contaminated product was properly rejected</td>
<td>• Check that the reject device is functioning properly and that the confirmation devices are positioned correctly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check if the polarity setting and the time delay within the software is set correctly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The sensor at the entry to the bin may be blocked or misaligned</td>
</tr>
<tr>
<td>Reject Check</td>
<td>• DSP PL1 Wire not connected properly SH Board oscillator circuitry may be faulty</td>
<td>• Call Fortress for assistance</td>
</tr>
<tr>
<td>Reference</td>
<td>• Check if DSP PL1 board interconnection cable/plug are fully located with no loose connections</td>
<td>• Call Fortress for assistance to check if SH Board is faulty</td>
</tr>
<tr>
<td>Test Signal</td>
<td>• Test signal was not detected during a test procedure</td>
<td>• Check the sensitivity and perform a manual test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fault can be cleared via the Clear soft key (S3)</td>
</tr>
</tbody>
</table>
Appendix #4: Phantom Models

Complete Metal Detector Product Line

Phantom Metal Detectors are available in a range of unique models for a variety of industrial applications.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phantom Detector</td>
<td>Large Bag Detector</td>
<td>VFFS Vertex Detector</td>
</tr>
<tr>
<td>Food & Packaging</td>
<td>Bulk Packs</td>
<td>Snack & Confectionery</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web Detector</td>
<td>Vent Tube Detector</td>
<td>Pipeline Detector</td>
</tr>
<tr>
<td>Textiles & Sheeted Material</td>
<td>Plastic & Glass Bottles</td>
<td>Liquids and Meats</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravity Detector</td>
<td>Pharmaceutical Detector</td>
<td>In-Foil Detector</td>
</tr>
<tr>
<td>Bulk Freefalling Product</td>
<td>Tablets & Capsules</td>
<td>Foil Packed Product</td>
</tr>
</tbody>
</table>

Learn more at: www.fortresstechnology.com

Make your Phantom Metal Detector a Critical Control Point with CONTACT Communication Software

For automated Event Logging and Data Collection; ideal for HACCP programs.